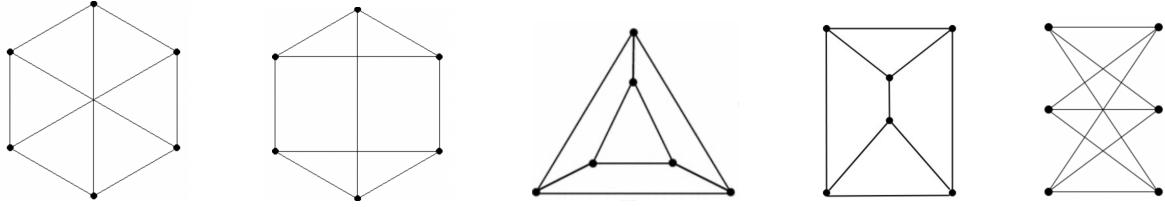


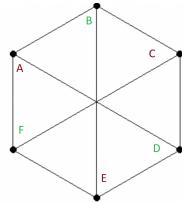
Problem Set 6 (Solutions by F. Gotti and D. Kliuev)

Problem 1 Recall that two graphs G_1 and G_2 are called isomorphic if there exists a bijective function $f: V(G_1) \rightarrow V(G_2)$, called an isomorphism, such that $uv \in E(G_1)$ if and only if $f(u)f(v) \in E(G_2)$. Which of the following graphs are isomorphic? Justify your answer.



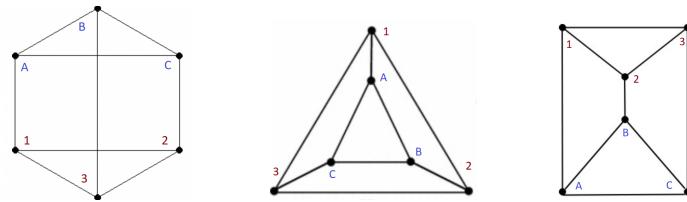
Solution. Let us first observe that isomorphisms preserve chromatic number (verify this!). Formally, if $f: V(G) \rightarrow V(G')$ is an isomorphism between graphs G and G' and $c: V(G') \rightarrow \mathbb{N}$ is a proper coloring of G' , then $c \circ f: V(G) \rightarrow \mathbb{N}$ is a proper coloring of G . Similarly, if c is a proper coloring of G , then $c \circ f^{-1}$ is a proper coloring of G' .

Let G_1, G_2, G_3, G_4 , and G_5 denote the graphs in the picture (from left to right). We note that G_1 is isomorphic to $K_{3,3}$, that is, it is isomorphic to G_5 . It contains all edges between the set of red vertices $\{A, C, E\}$ and the set of green vertices $\{B, D, F\}$:



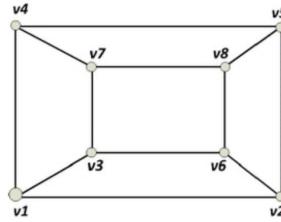
In particular, $\chi(G_1) = \chi(G_5) = 2$. Now observe that that graphs G_2, G_3 , and G_4 all contain a triangle. Hence $\chi(G_i) > 2$ for $i \in \llbracket 2, 4 \rrbracket$, and so none of the graphs G_2, G_3 , and G_4 is isomorphic to G_1 (or G_5).

Finally, we claim that the graphs G_2, G_3 , and G_4 are isomorphic to each other. Indeed, they all consist of two triangles ABC , 123 and edges $1A, 2B, 3C$, as illustrated in the following picture.



□

Problem 2 Let G be a graph. If $f: V(G) \rightarrow V(G)$ is an isomorphism of graphs, then we call f an **automorphism** of G . How many automorphisms does the following graph have? Justify your answer.



Solution. Let f be an automorphism of G . Since the vertices v_2, v_3, v_4 are all neighbors of v_1 , $f(v_2)$, $f(v_3)$, $f(v_4)$ must be distinct neighbors of $f(v_1)$.

Suppose that f, g are automorphisms of G such that $f(v_i) = g(v_i)$ for every $i \in [4]$. Then $h := g^{-1} \circ f$ is an automorphism of G such that $h(v_i) = v_i$ for $i \in [4]$. Note that the vertices v_2 and v_4 have two common neighbors, namely, v_1 and v_5 . Since h is bijection we have $h(v_5) = v_5$. Reasoning similarly, we can conclude that $h(v_6) = v_6$ and $h(v_7) = v_7$. Since h is bijection, $h(v_8) = v_8$. Thus, it follows that any automorphism of G is uniquely determined by the images of the vertices v_1, v_2, v_3 , and v_4 .

Let a, b, c, d be distinct vertices of G such that b, c, d are neighbors of a . We claim that there exists an automorphism f of G such that $f(v_1) = a$, $f(v_2) = b$, $f(v_3) = c$, $f(v_4) = d$. In order to prove this claim, we first note that G is isomorphic to the graph consisting of all the vertices and edges of a cube. It follows that any isometry of a cube gives an automorphism of G . We will think of G as the 1-skeleton (i.e., the graph of all vertices and edges) of a cube, and we will construct an isometry f of the Euclidean plane with the required properties. First we apply a translation by vector $\vec{v_1a}$. After that we apply an orthogonal transformation that fixes a and sends the vectors $\vec{v_1v_2}$, $\vec{v_1v_5}$, and $\vec{v_1v_6}$ to the vectors \vec{ab} , \vec{ac} , and \vec{ad} , respectively. Such transformation exists because $\{\vec{v_1v_2}, \vec{v_1v_5}, \vec{v_1v_6}\}$ and $\{\vec{ab}, \vec{ac}, \vec{ad}\}$ are orthogonal basis of \mathbb{R}^3 . Using $\vec{v_2v_5} = \vec{v_1v_4}$ and similar equations, we deduce that f sends G to G . We note that f sends v_1, v_2, v_3, v_4 to a, b, c, d , as required.

As a result, we conclude that automorphisms of G are in one-to-one correspondence with quadruples (a, b, c, d) of distinct vertices of G such that b, c, d are neighbors of a . There are 8 ways to choose a and $3!$ ways to choose b, c, d , giving a total of 48 automorphisms. \square

Problem 3 Let G be a simple graph. We say that $e \in E(G)$ is a bridge if the graph $(V(G), E(G) \setminus \{e\})$ has more connected components than G . Let G be a bipartite k -regular graph for $k \geq 2$. Prove that G has no bridge.

Solution. Suppose, by way of contradiction, that G contains a bridge e . Let W be a connected component that contains e . Without loss of generality, we may assume that $G = W$, which means that G is connected. Let $G = G_1 \cup G_2$, where all edges go between G_1 and G_2 .

Let U and V be connected components of the graph we obtain from G after dropping e . Now set $U_i := U \cap G_i$ and $V_i := V \cap G_i$ for each $i \in [2]$. The graphs U and V are bipartite with parts (U_1, U_2) and (V_1, V_2) , respectively. Since G is connected e must connect a vertex in U with a vertex in V . We can assume, without loss of generality, that e connects a vertex in U_1 with a vertex in V_2 .

For each vertex $v \in U$, let $d_G(v)$ and $d_U(v)$ denote the degrees of v in G and U , respectively. For all vertices $v \in U$ except one, the equality $d_G(v) = d_U(v)$ holds. Letting S be the set of edges between U_1 and U_2 , we obtain

$$k|U_2| = \sum_{v \in U_2} d_G(v) = \sum_{v \in U_2} d_U(v) = |S| = \sum_{v \in U_1} d_U(v) = \sum_{v \in U_1} d_G(v) - 1 = k|U_1| - 1.$$

However, this implies that 1 is divisible by k , contradicting the fact that $k \geq 2$. Thus, we conclude that G has no bridges. \square

Problem 4 For every $n \in \mathbb{N}$ with $n \geq 3$, find the chromatic polynomial of C_n , the cycle graph on $[n]$.

Solution. For each $n \geq 3$, let $q_n(x)$ be the chromatic polynomial of C_n . For convenience, we allow $n = 2$ and define C_2 in this case to be a graph on two vertices consisting of one edge. We have seen before that, for every simple graph G , the following identity holds:

$$p_G(x) = p_{G \setminus e}(x) - p_{G/e}(x),$$

where $p_G(x)$, $p_{G \setminus e}(x)$, and $p_{G/e}(x)$ are the chromatic polynomials of G , its deletion $G \setminus e$, and its contraction G/e , respectively. Observe that for each $n \geq 3$, if $G = C_n$ and $e \in E(G)$, then $G/e = C_{n-1}$ and $G \setminus e = P_n$, a path of length n . Accordingly,

$$q_n(x) = p_{P_n}(x) - q_{n-1}(x).$$

We have seen in lectures that $p_{P_n}(x) = x(x-1)^{n-1}$. Let us proceed by induction on n to argue that

$$q_n(x) = (x-1)^n + (-1)^n(x-1)$$

for every $n \geq 2$. When $n = 2$, we see that $q_2(x) = P_{P_2}(x) = x(x-1) = (x-1)^2 + (x-1)$. The inductive step from n to $n+1$ goes as follows:

$$\begin{aligned} q_{n+1}(x) &= p_{P_{n+1}}(x) - q_n(x) \\ &= x(x-1)^n - (x-1)^n - (-1)^n(x-1) \\ &= (x-1)^{n+1} + (-1)^{n+1}(x-1). \end{aligned}$$

Hence $p_{C_n}(x) = q_n(x) = (x-1)^{n+1} + (-1)^{n+1}(x-1)$. □

Problem 5 For $n \in \mathbb{N}$, prove that the chromatic polynomial of the complete bipartite graph $K_{n,2}$ is $x(x-1)^n + x(x-1)(x-2)^n$.

Solution. Let $G = K_{n,2}$. It suffices to find a polynomial expression for $p_G(k)$ for any positive integer k with $k \geq 2$. Fix $k \in \mathbb{N}$ with $k \geq 2$, and let us find the number of proper k -coloring of $K_{n,2}$. Let $\{u, v\}$ be a size-2 part of the bipartite graph $K_{n,2}$. We split the rest of the proof into the following two cases.

Case 1: u and v have the same color. In this case, there are k colors to choose for u and v , and then there are $k-1$ colors to choose for each of the remaining vertices. This gives a total of $k(k-1)^n$ proper k -coloring in this first case.

Case 2: u and v have different colors. In this case, there are k colors to choose for u , there are $k-1$ colors to choose for v , and then there are $k-2$ colors to choose for each of the remaining vertices. This gives a total of $k(k-1)(k-2)^n$ proper k -coloring in this second case.

Hence we conclude that $p_G(k) = k(k-1)^n + k(k-1)(k-2)^n$, which give the desired chromatic polynomial for $K_{n,2}$. □

Problem 6 Let G be a simple connected k -regular graph (with $k \geq 3$) that is neither an odd cycle nor a complete graph, and assume that G has no cut-vertices. Prove that if the subgraph $G \setminus \{v\}$ of G contains a cut-vertex for some $v \in V(G)$, then $\chi(G) \leq \Delta(G)$.

Solution. We will prove Brooks' theorem by induction on $|G|$. The base cases $|G| \in [2]$ are clear. The induction step was already proved in the lecture notes for all cases except when G satisfies the conditions in the statement of this problem. Hence it suffices to prove the statement of this problem.

Let u be a cut-vertex in graph $G' := G \setminus \{v\}$. Let H be the graph obtained from G' be removing u (along with the edges incident to u in G'), and let H_1, \dots, H_ℓ be the connected components of H . The fact that u is a cut-vertex of G' ensures that $\ell \geq 2$. Since G has no cut-vertices, $G \setminus \{u\}$ is connected. As there are no edges between H_i and H_j when $i \neq j$, the only possible edges between H_i and $V(G) \setminus (V(H_i) \cup \{u\})$ must connect some vertices of H_i to v . Since $G \setminus \{u\}$ is connected we deduce that, for each $i \in [\ell]$, there exists an edge connecting v to some of the vertices of H_i .

Now for every $i \in [\ell]$, let H'_i be the induced subgraph of G on the set of vertices $V(H_i) \cup \{u, v\}$. We note that $E(G) = E(H'_1) \cup \dots \cup E(H'_\ell)$. Hence it is enough to color H'_1, \dots, H'_ℓ such that we use the same color for u and we use the same color for v .

As for each $i \in [\ell]$, there is an edge of G connecting u to some vertex in H_i , the degree of u in H'_i is at most $k - \ell + 1$. The same statement holds for v . For each $i \in [\ell]$,

set $K_i := H'_i$ if u and v are adjacent and set $K_i := (V(H'_i), E(H'_i) \cup \{uv\})$ otherwise. The degree of u, v in K_i is at most $k + 2 - l \leq k$.

Any vertex of H_i has degree $k \geq 3$ in K_i , and so K_i cannot be an odd cycle. Thus, if none of K_1, \dots, K_ℓ is a complete graph on $k + 1$ vertices, then we can use Brooks' theorem on K_1, \dots, K_ℓ to obtain proper k -colorings of the graphs H'_1, \dots, H'_ℓ all satisfying that u, v have different colors. After relabeling colors, one can assume that u has color 1 and v has color 2 in each of these proper k -colorings. This gives a proper coloring of G .

Finally, assume that K_1, \dots, K_ℓ are complete graphs on $k + 1$ vertices. In particular, H_1 is a complete graph on $k - 1$ vertices and there is an edge from both u and v to each vertex in H_1 . Hence there is only one edge from u to $V(G) \setminus V(H'_1)$, and the same statement holds for v . Since the degrees of u and v in K_1 is at most $k - \ell + 2$, the equality $\ell = 2$ must hold. We use now Brooks' theorem for H_2 to obtain a proper k -coloring of H_2 . Now there are only two edges between $\{u, v\}$ and H_2 . Hence there are at most two colors that we cannot use for u or v . Since $k \geq 3$, we can choose a third color and use it for both u and v . After that, we color H_1 using the $k - 1$ colors that we did not use for $\{u, v\}$. This gives a proper k -coloring of G . \square

Problem 7 *Is it possible to subdivide a square into finitely many concave quadrilaterals?*

Solution. Assume, towards a contradiction, that we have subdivided a given square S into n concave quadrilaterals. Now consider this subdivision as a planar graph G with V vertices, E edges, and F faces. It is clear that the n concave angles of the concave quadrilaterals determine n vertices of G that are contained in the interior of the given square. Thus, $V \geq n + 4$ (as the corners of S are also vertices of G). On the other hand, G has $n + 1$ faces, namely, the n concave quadrilaterals and the complement of the given square, which is the unbounded face. Since the boundary of each face consists of 4 edges, the fact that every edge is in the boundary of exactly two faces guarantees that $E = 4F/2 = 2(n + 1)$. It follows now by the Euler's formula that $V = E - F + 2 = n + 3$, contradicting that $V \geq n + 4$. \square

Problem 8 *Let P be a convex polyhedron with triangular faces. Suppose that the edges of P are oriented. A **singularity** of P is a face whose edges form an oriented cycle or a vertex v with $\text{indeg}(v) \cdot \text{outdeg}(v) = 0$. Prove that P has at least two singularities.*

Solution. Let G be the directed graph whose vertices and arrows are the vertices and oriented edges of P , respectively. Let V , E , and F be the number of vertices, arrows, and faces of G , respectively. First, we find expressions for both E and F in terms of V .

Since the boundary of every face of G consists of 3 arrows, and every arrow belongs to the boundary of exactly two faces of G , it follows that $E = 3F/2$, and so

$$V = E - F + 2 = \frac{3F}{2} - F + 2 = \frac{F}{2} + 2$$

by virtue of the Euler's formula. Therefore

$$F = 2V - 4. \quad (1)$$

Now let N denote the number of oriented paths of length 2 in G . Observe that every vertex that is a singularity is the middle vertex of at least two paths in G of length 2. Therefore, after letting V_s denote the number of vertices of G that are singularities, we see that

$$N \geq 2(V - V_s) = 2V - 2V_s. \quad (2)$$

In addition, observe that each face of G that is not a singularity contributes with 1 to N , while each face of G that is a singularity contributes with 3 to N . Thus, after letting F_s denote the number of faces of G that are singularities, we obtain that

$$F + 2F_s = (F - F_s) + 3F_s = N \geq 2V - 2V_s, \quad (3)$$

where the last inequality is (2). Now we can use (1) in the inequality (3) to obtain that $2(V_s + F_s) \geq 2V - F = 4$. Hence the number of singularities $V_s + F_s$ of P is at least 2, which concludes the proof. \square