MIT 18.211: Combinatorial Analysis (Fall 2021) Instructor: Felix Gotti

Problem Set 6 (Solutions by F. Gotti and D. Kliuev)

Problem 1 Recall that two graphs G, and Gs are called isomorphic if there exists a
bijective function f: V(G1) — V(Gs), called an isomorphism, such that uv € E(G1) if
and only if f(u)f(v) € E(Gy). Which of the following graphs are isomorphic? Justify
Your answer.

Solution. Let us first observe that isomorphisms preserve chromatic number (verify
this!). Formally, if f: V(G) — V(G’) is an isomorphism between graphs G and G’ and
c: V(G") — N is a proper coloring of G’, then co f: V(G) — N is a proper coloring
of G. Similarly, if ¢ is a proper coloring of G, then co f~! is a proper coloring of G'.
Let Gy, Go, G5, G4, and G5 denote the graphs in the picture (from left to right). We
note that GGy is isomorphic to K3 3, that is, it is isomorphic to G5. It contains all edges
between the set of red vertices {A, C, E'} and the set of green vertices { B, D, F'}:

In particular, x(G1) = x(G5) = 2. Now observe that that graphs Go, G3, and Gy all
contain a triangle. Hence x(G;) > 2 for i € [2,4], and so none of the graphs Gs, G3,
and Gy is isomorphic to G (or Gj).

Finally, we claim that the graphs G, G5, and G4 are isomorphic to each other.

Indeed, they all consist of two triangles ABC, 123 and edges 1A, 2B, 3C, as illustrated
in the following picture.
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Problem 2 Let G be a graph. If f: V(G) — V(G) is an isomorphism of graphs,
then we call f an automorphism of G. How many automorphisms does the following
graph have? Justify your answer.
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Solution. Let f be an automorphism of GG. Since the vertices vq, v3, v4 are all neighbors
of vy, f(vy), the vertices f(v3), f(v4) must be distinct neighbors of f(vy).

Suppose that f, g are automorphisms of G such that f(v;) = g(v;) for every i € [4].
Then h := g~! o f is an automorphism of G such that h(v;) = v; for i € [4]. Note
that the vertices v and vy have two common neighbors, namely, v; and vs. Since h is
bijection we have h(vs) = vs. Reasoning similarly, we can conclude that h(vg) = vg and
h(v7) = vy. Since h is bijection, h(vs) = vs. Thus, it follows that any automorphism
of G is uniquely determined by the images of the vertices vy, v, v3, and vy.

Let a, b, ¢, d be distinct vertices of GG such that b, ¢, d are neighbors of a. We claim
that there exists an automorphism f of G such that f(v) = a, f(va) = b, f(v3) = ¢,
f(v4) = d. In order to prove this claim, we first note that G is isomorphic to the graph
consisting of all the vertices and edges of a cube. It follows that any isometry of a cube
gives an automorphism of G. We will think of G as the 1-skeleton (i.e., the graph of all
vertices and edges) of a cube, and we will construct an isometry f of the Euclidean plane
with the required properties. First we apply a translation by vector v14. After that we
apply an orthogonal transformation that fixes ¢ and sends the vectors v10% , m, and
7105 to the vectors %, @, and c?l, respectively. Such transformation exists because
{o1v5, 0105, o105} and {a?, @,cﬁl} are orthogonal basis of R3. Using 0705 = 0104 and
similar equations, we deduce that f sends G to G. We note that f sends vy, vs, v3, vy
to a, b, c,d, as required.

As a result, we conclude that automorphisms of G are in one-to-one correspon-
dence with quadruples (a, b, ¢, d) of distinct vertices of G such that b, ¢, d are neighbors
of a. There are 8 ways to choose a and 3! ways to choose b, ¢, d, giving a total of 48
automorphisms. O

Problem 3 Let G be a simple graph. We say that e € E(G) is a bridge if the graph
(V(G), E(G) \ {e}) has more connected components than G. Let G be a bipartite k-
reqular graph for k > 2. Prove that G has no bridge.
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Solution. Suppose, by way of contradiction, that G contains a bridge e. Let W be
a connected component that contains e. Without loss of generality, we may assume
that G = W, which means that G is connected. Let G = G; U G5, where all edges go
between GG; and (.

Let U and V be connected components of the graph we obtain from G after drop-
ping e. Now set U; := U NG, and V; := V NG, for each i € [2]. The graphs U and V/
are bipartite with parts (Uy, Uz) and (V;, V3), respectively. Since G is connected e must
connect a vertex in U with a vertex in V. We can assume, without loss of generality,
that e connects a vertex in U; with a vertex in V5.

For each vertex v € U, let dg(v) and dy(v) denote the degrees of v in G and U,
respectively. For all vertices v € U except one, the equality dg(v) = dy(v) holds.
Letting S be the set of edges between U; and U,, we obtain

KUo| =) " da(v) =Y dy(v) =18 =) dy(v) =Y de(v)—1=kU| - 1.

veUs veUsa vely vely
However, this implies that 1 is divisible by k, contradicting the fact that £ > 2. Thus,
we conclude that G has no bridges. 0J

Problem 4 For every n € N with n > 3, find the chromatic polynomial of C,,, the
cycle graph on [n].

Solution. For each n > 3, let ¢, (z) be the chromatic polynomial of C),. For convenience,
we allow n = 2 and define () in this case to be a graph on two vertices consisting of
one edge. We have seen before that, for every simple graph G, the following identity
holds:
pa(r) = pare() — Pase(),

where pg(x), pa\e(z), and pg/e(z) are the chromatic polynomials of G, its deletion
G \ e, and its contraction G/e, respectively. Observe that for each n > 3, if G = C,
and e € E(G), then G/e = C,,_1 and G \ e = P,, a path of length n. Accordingly,

() = pp, () = qn-1(2).
We have seen in lectures that pp, () = z(x — 1)"~!. Let us proceed by induction on n
to argue that
() = (z = 1)" + (=1)"(z = 1)
for every n > 2. When n = 2, we see that ¢o(z) = Pp,(z) = z(z—1) = (z—1)*+(z—1).
The inductive step from n to n + 1 goes as follows:

Gn11(2) = pp, 4, () — gu(2)
=z(z-1)"—-(z-1)"=(-1)"(z—1)
=(x— 1"+ (=1)"(z - 1).
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Hence pe, (2) = gu(z) = (x — )"+ (=1)"(z = 1). O

Problem 5 Forn € N, prove that the chromatic polynomial of the complete bipartite
graph K, 5 is v(x — 1)" + x(x — 1)(x — 2)™.

Solution. Let G = K, ». It suffices to find a polynomial expression for ps(k) for any
positive integer k£ with k£ > 2. Fix k£ € N with £ > 2, and let us find the number of
proper k-coloring of K, 5. Let {u,v} be a size-2 part of the bipartite graph K, .. We
split the rest of the proof into the following two cases.

Case 1: uw and v have the same color. In this case, there are k colors to choose for
u and v, and then there are k — 1 colors to choose for each of the remaining vertices.
This gives a total of k(k — 1)™ proper k-coloring in this first case.

Case 2: u and v have different colors. In this case, there are k colors to choose for u,
there are k — 1 colors to choose for v, and then there are k — 2 colors to choose for each
of the remaining vertices. This gives a total of k(k — 1)(k — 2)™ proper k-coloring in
this second case.

Hence we conclude that pg(k) = k(k—1)"+k(k—1)(k—2)™, which give the desired
chromatic polynomial for K, . O

Problem 6 Let G be a simple connected k-regular graph (with k > 3) that is neither
an odd cycle nor a complete graph, and assume that G has no cut-vertices. Prove that if
the subgraph G\{v} of G contains a cut-vertez for some v € V(G), then x(G) < A(G).

Solution. We will prove Brooks’ theorem by induction on |G|. The base cases |G| € [2]
are clear. The induction step was already proved in the lecture notes for all cases except
when G satisfies the conditions in the statement of this problem. Hence it suffices to
prove the statement of this problem.

Let u be a cut-vertex in graph G’ := G\ {v}. Let H be the graph obtained from G’
be removing u (along with the edges incident to v in G’), and let Hy,..., H; be the
connected components of H. The fact that u is a cut-vertex of G’ ensures that ¢ > 2.
Since G has no cut-vertices, G\ {u} is connected. As there are no edges between H;
and H; when i # j, the only possible edges between H; and V(G)\ (V(H;) U{u}) must
connect some vertices of H; to v. Since G \ {u} is connected we deduce that, for each
i € [¢], there exists an edge connecting v to some of the vertices of H;.

Now for every i € [{], let H] be the induced subgraph of G on the set of vertices
V(H;)U{u,v}. We note that E(G) = E(H;{)U---UE(H}). Hence it is enough to color
Hi, ..., H, such that we use the same color for u and we use the same color for v.

As for each i € [{], there is an edge of G connecting u to some vertex in H;, the
degree of u in H/ is at most k — ¢+ 1. The same statement holds for v. For each i € [¢],
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set K; := H! if u and v are adjacent and set K; := (V(H]), E(H]) U {uv}) otherwise.
The degree of u,v in K; is at most k + 2 — [ < k.

Any vertex of H; has degree k£ > 3 in K;, and so K; cannot be an odd cycle.
Thus, if none of K,..., K, is a complete graph on k + 1 vertices, then we can use
Brooks’ theorem on Kj, ..., K, to obtain proper k-colorings of the graphs H/, ..., H,
all satisfying that u,v have different colors. After relabeling colors, one can assume
that u has color 1 and v has color 2 in each of these proper k-colorings. This gives a
proper coloring of G.

Finally, assume that Ky,..., K, are complete graphs on k + 1 vertices. In particu-
lar, Hy is a complete graph on k£ — 1 vertices and there is an edge from both v and v
to each vertex in Hy. Hence there is only one edge from u to V(G) \ V(H]), and the
same statement holds for v. Since the degrees of v and v in K is at most k — ¢ + 2,
the equality ¢ = 2 must hold. We use now Brooks’ theorem for H, to obtain a proper
k-coloring of H,. Now there are only two edges between {u,v} and Hy. Hence there
are at most two colors that we cannot use for u or v. Since £ > 3, we can choose a
third color and use it for both u and v. After that, we color H; using the k — 1 colors
that we did not use for {u,v}. This gives a proper k-coloring of G. O

Problem 7 Is it possible to subdivide a square into finitely many concave quadrilat-
eral?

Solution. Assume, towards a contradiction, that we have subdivided a given square S
into n concave quadrilaterals. Now consider this subdivision as a planar graph G
with V vertices, E edges, and F' faces. It is clear that the n concave angles of the
concave quadrilaterals determine n vertices of G that are contained in the interior
of the given square. Thus, V' > n + 4 (as the corners of S are also vertices of G).
On the other hand, G has n + 1 faces, namely, the n concave quadrilaterals and the
complement of the given square, which is the unbounded face. Since the boundary of
each face consists of 4 edges, the fact that every edge is in the boundary of exactly two
faces guarantees that £ = 4F/2 = 2(n+1). It follows now by the Euler’s formula that
V =F — F+2=n+ 3, contradicting that V' > n + 4. O

Problem 8 Let P be a convex polyhedron with triangular faces. Suppose that the edges
of P are oriented. A singularity of P is a face whose edges form an oriented cycle
or a vertex v with indeg(v) - outdeg(v) = 0. Prove that P has at least two singularities.

Solution. Let G be the directed graph whose vertices and arrows are the vertices and
oriented edges of P, respectively. Let V| E/, and F be the number of vertices, arrows,
and faces of G, respectively. First, we find expressions for both £ and F' in terms of V.
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Since the boundary of every face of G consists of 3 arrows, and every arrow belongs to
the boundary of exactly two faces of G, it follows that £ = 3F/2, and so

3F F
VzE—F+2:7—F+2:§+2

by virtue of the Euler’s formula. Therefore
F=2V -4 (1)

Now let N denote the number of oriented paths of length 2 in G. Observe that every
vertex that is a singularity is the middle vertex of at least two paths in G of length 2.
Therefore, after letting V; denote the number of vertices of G that are singularities, we
see that

N >2(V =V,) =2V =2V, (2)

In addition, observe that each face of G that is not a singularity contributes with 1
to N, while each face of G that is a singularity contributes with 3 to V. Thus, after
letting F; denote the number of faces of GG that are singularities, we obtain that

F+2F,=(F—F,)+3F, =N >2V -2V, (3)

where the last inequality is (2). Now we can use (1) in the inequality (3) to obtain
that 2(Vy + Fs) > 2V — F = 4. Hence the number of singularities Vs + F; of P is at
least 2, which concludes the proof. 0



