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Problem Set 6 (Solutions by F. Gotti and D. Kliuev)

Problem 1 Recall that two graphs G1 and G2 are called isomorphic if there exists a
bijective function f : V (G1)→ V (G2), called an isomorphism, such that uv ∈ E(G1) if
and only if f(u)f(v) ∈ E(G2). Which of the following graphs are isomorphic? Justify
your answer.

Solution. Let us first observe that isomorphisms preserve chromatic number (verify
this!). Formally, if f : V (G)→ V (G′) is an isomorphism between graphs G and G′ and
c : V (G′) → N is a proper coloring of G′, then c ◦ f : V (G) → N is a proper coloring
of G. Similarly, if c is a proper coloring of G, then c ◦ f−1 is a proper coloring of G′.

Let G1, G2, G3, G4, and G5 denote the graphs in the picture (from left to right). We
note that G1 is isomorphic to K3,3, that is, it is isomorphic to G5. It contains all edges
between the set of red vertices {A,C,E} and the set of green vertices {B,D, F}:

In particular, χ(G1) = χ(G5) = 2. Now observe that that graphs G2, G3, and G4 all
contain a triangle. Hence χ(Gi) > 2 for i ∈ J2, 4K, and so none of the graphs G2, G3,
and G4 is isomorphic to G1 (or G5).

Finally, we claim that the graphs G2, G3, and G4 are isomorphic to each other.
Indeed, they all consist of two triangles ABC, 123 and edges 1A, 2B, 3C, as illustrated
in the following picture.

�
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Problem 2 Let G be a graph. If f : V (G) → V (G) is an isomorphism of graphs,
then we call f an automorphism of G. How many automorphisms does the following
graph have? Justify your answer.

Solution. Let f be an automorphism of G. Since the vertices v2, v3, v4 are all neighbors
of v1, f(v2), the vertices f(v3), f(v4) must be distinct neighbors of f(v1).

Suppose that f, g are automorphisms of G such that f(vi) = g(vi) for every i ∈ [4].
Then h := g−1 ◦ f is an automorphism of G such that h(vi) = vi for i ∈ [4]. Note
that the vertices v2 and v4 have two common neighbors, namely, v1 and v5. Since h is
bijection we have h(v5) = v5. Reasoning similarly, we can conclude that h(v6) = v6 and
h(v7) = v7. Since h is bijection, h(v8) = v8. Thus, it follows that any automorphism
of G is uniquely determined by the images of the vertices v1, v2, v3, and v4.

Let a, b, c, d be distinct vertices of G such that b, c, d are neighbors of a. We claim
that there exists an automorphism f of G such that f(v1) = a, f(v2) = b, f(v3) = c,
f(v4) = d. In order to prove this claim, we first note that G is isomorphic to the graph
consisting of all the vertices and edges of a cube. It follows that any isometry of a cube
gives an automorphism of G. We will think of G as the 1-skeleton (i.e., the graph of all
vertices and edges) of a cube, and we will construct an isometry f of the Euclidean plane
with the required properties. First we apply a translation by vector −→v1a. After that we
apply an orthogonal transformation that fixes a and sends the vectors −−→v1v2,−−→v1v2, and
−−→v1v2 to the vectors

−→
ab,−→ac, and

−→
ad, respectively. Such transformation exists because

{−−→v1v2,−−→v1v2,−−→v1v2} and {
−→
ab,−→ac,

−→
ad} are orthogonal basis of R3. Using −−→v2v5 = −−→v1v4 and

similar equations, we deduce that f sends G to G. We note that f sends v1, v2, v3, v4
to a, b, c, d, as required.

As a result, we conclude that automorphisms of G are in one-to-one correspon-
dence with quadruples (a, b, c, d) of distinct vertices of G such that b, c, d are neighbors
of a. There are 8 ways to choose a and 3! ways to choose b, c, d, giving a total of 48
automorphisms. �

Problem 3 Let G be a simple graph. We say that e ∈ E(G) is a bridge if the graph
(V (G), E(G) \ {e}) has more connected components than G. Let G be a bipartite k-
regular graph for k ≥ 2. Prove that G has no bridge.



MIT 18.211: Combinatorial Analysis (Fall 2021) Instructor: Felix Gotti

Solution. Suppose, by way of contradiction, that G contains a bridge e. Let W be
a connected component that contains e. Without loss of generality, we may assume
that G = W , which means that G is connected. Let G = G1 ∪G2, where all edges go
between G1 and G2.

Let U and V be connected components of the graph we obtain from G after drop-
ping e. Now set Ui := U ∩Gi and Vi := V ∩Gi for each i ∈ [2]. The graphs U and V
are bipartite with parts (U1, U2) and (V1, V2), respectively. Since G is connected e must
connect a vertex in U with a vertex in V . We can assume, without loss of generality,
that e connects a vertex in U1 with a vertex in V2.

For each vertex v ∈ U , let dG(v) and dU(v) denote the degrees of v in G and U ,
respectively. For all vertices v ∈ U except one, the equality dG(v) = dU(v) holds.
Letting S be the set of edges between U1 and U2, we obtain

k|U2| =
∑
v∈U2

dG(v) =
∑
v∈U2

dU(v) = |S| =
∑
v∈U1

dU(v) =
∑
v∈U1

dG(v)− 1 = k|U1| − 1.

However, this implies that 1 is divisible by k, contradicting the fact that k ≥ 2. Thus,
we conclude that G has no bridges. �

Problem 4 For every n ∈ N with n ≥ 3, find the chromatic polynomial of Cn, the
cycle graph on [n].

Solution. For each n ≥ 3, let qn(x) be the chromatic polynomial of Cn. For convenience,
we allow n = 2 and define C2 in this case to be a graph on two vertices consisting of
one edge. We have seen before that, for every simple graph G, the following identity
holds:

pG(x) = pG\e(x)− pG/e(x),

where pG(x), pG\e(x), and pG/e(x) are the chromatic polynomials of G, its deletion
G \ e, and its contraction G/e, respectively. Observe that for each n ≥ 3, if G = Cn

and e ∈ E(G), then G/e = Cn−1 and G \ e = Pn, a path of length n. Accordingly,

qn(x) = pPn(x)− qn−1(x).

We have seen in lectures that pPn(x) = x(x− 1)n−1. Let us proceed by induction on n
to argue that

qn(x) = (x− 1)n + (−1)n(x− 1)

for every n ≥ 2. When n = 2, we see that q2(x) = PP2(x) = x(x−1) = (x−1)2+(x−1).
The inductive step from n to n+ 1 goes as follows:

qn+1(x) = pPn+1(x)− qn(x)

= x(x− 1)n − (x− 1)n − (−1)n(x− 1)

= (x− 1)n+1 + (−1)n+1(x− 1).
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Hence pCn(x) = qn(x) = (x− 1)n+1 + (−1)n+1(x− 1). �

Problem 5 For n ∈ N, prove that the chromatic polynomial of the complete bipartite
graph Kn,2 is x(x− 1)n + x(x− 1)(x− 2)n.

Solution. Let G = Kn,2. It suffices to find a polynomial expression for pG(k) for any
positive integer k with k ≥ 2. Fix k ∈ N with k ≥ 2, and let us find the number of
proper k-coloring of Kn,2. Let {u, v} be a size-2 part of the bipartite graph Kn,2. We
split the rest of the proof into the following two cases.

Case 1: u and v have the same color. In this case, there are k colors to choose for
u and v, and then there are k − 1 colors to choose for each of the remaining vertices.
This gives a total of k(k − 1)n proper k-coloring in this first case.

Case 2: u and v have different colors. In this case, there are k colors to choose for u,
there are k−1 colors to choose for v, and then there are k−2 colors to choose for each
of the remaining vertices. This gives a total of k(k − 1)(k − 2)n proper k-coloring in
this second case.

Hence we conclude that pG(k) = k(k−1)n +k(k−1)(k−2)n, which give the desired
chromatic polynomial for Kn,2. �

Problem 6 Let G be a simple connected k-regular graph (with k ≥ 3) that is neither
an odd cycle nor a complete graph, and assume that G has no cut-vertices. Prove that if
the subgraph G\{v} of G contains a cut-vertex for some v ∈ V (G), then χ(G) ≤ ∆(G).

Solution. We will prove Brooks’ theorem by induction on |G|. The base cases |G| ∈ [2]
are clear. The induction step was already proved in the lecture notes for all cases except
when G satisfies the conditions in the statement of this problem. Hence it suffices to
prove the statement of this problem.

Let u be a cut-vertex in graph G′ := G\{v}. Let H be the graph obtained from G′

be removing u (along with the edges incident to u in G′), and let H1, . . . , H` be the
connected components of H. The fact that u is a cut-vertex of G′ ensures that ` ≥ 2.
Since G has no cut-vertices, G \ {u} is connected. As there are no edges between Hi

and Hj when i 6= j, the only possible edges between Hi and V (G)\ (V (Hi)∪{u}) must
connect some vertices of Hi to v. Since G \ {u} is connected we deduce that, for each
i ∈ [`], there exists an edge connecting v to some of the vertices of Hi.

Now for every i ∈ [`], let H ′i be the induced subgraph of G on the set of vertices
V (Hi)∪{u, v}. We note that E(G) = E(H ′1)∪· · ·∪E(H ′`). Hence it is enough to color
H ′1, . . . , H

′
` such that we use the same color for u and we use the same color for v.

As for each i ∈ [`], there is an edge of G connecting u to some vertex in Hi, the
degree of u in H ′i is at most k− `+1. The same statement holds for v. For each i ∈ [`],
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set Ki := H ′i if u and v are adjacent and set Ki := (V (H ′i), E(H ′i) ∪ {uv}) otherwise.
The degree of u, v in Ki is at most k + 2− l ≤ k.

Any vertex of Hi has degree k ≥ 3 in Ki, and so Ki cannot be an odd cycle.
Thus, if none of K1, . . . , K` is a complete graph on k + 1 vertices, then we can use
Brooks’ theorem on K1, . . . , K` to obtain proper k-colorings of the graphs H ′1, . . . , H

′
`

all satisfying that u, v have different colors. After relabeling colors, one can assume
that u has color 1 and v has color 2 in each of these proper k-colorings. This gives a
proper coloring of G.

Finally, assume that K1, . . . , K` are complete graphs on k + 1 vertices. In particu-
lar, H1 is a complete graph on k − 1 vertices and there is an edge from both u and v
to each vertex in H1. Hence there is only one edge from u to V (G) \ V (H ′1), and the
same statement holds for v. Since the degrees of u and v in K1 is at most k − ` + 2,
the equality ` = 2 must hold. We use now Brooks’ theorem for H2 to obtain a proper
k-coloring of H2. Now there are only two edges between {u, v} and H2. Hence there
are at most two colors that we cannot use for u or v. Since k ≥ 3, we can choose a
third color and use it for both u and v. After that, we color H1 using the k − 1 colors
that we did not use for {u, v}. This gives a proper k-coloring of G. �

Problem 7 Is it possible to subdivide a square into finitely many concave quadrilat-
eral?

Solution. Assume, towards a contradiction, that we have subdivided a given square S
into n concave quadrilaterals. Now consider this subdivision as a planar graph G
with V vertices, E edges, and F faces. It is clear that the n concave angles of the
concave quadrilaterals determine n vertices of G that are contained in the interior
of the given square. Thus, V ≥ n + 4 (as the corners of S are also vertices of G).
On the other hand, G has n + 1 faces, namely, the n concave quadrilaterals and the
complement of the given square, which is the unbounded face. Since the boundary of
each face consists of 4 edges, the fact that every edge is in the boundary of exactly two
faces guarantees that E = 4F/2 = 2(n+ 1). It follows now by the Euler’s formula that
V = E − F + 2 = n+ 3, contradicting that V ≥ n+ 4. �

Problem 8 Let P be a convex polyhedron with triangular faces. Suppose that the edges
of P are oriented. A singularity of P is a face whose edges form an oriented cycle
or a vertex v with indeg(v) · outdeg(v) = 0. Prove that P has at least two singularities.

Solution. Let G be the directed graph whose vertices and arrows are the vertices and
oriented edges of P , respectively. Let V , E, and F be the number of vertices, arrows,
and faces of G, respectively. First, we find expressions for both E and F in terms of V .
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Since the boundary of every face of G consists of 3 arrows, and every arrow belongs to
the boundary of exactly two faces of G, it follows that E = 3F/2, and so

V = E − F + 2 =
3F

2
− F + 2 =

F

2
+ 2

by virtue of the Euler’s formula. Therefore

F = 2V − 4. (1)

Now let N denote the number of oriented paths of length 2 in G. Observe that every
vertex that is a singularity is the middle vertex of at least two paths in G of length 2.
Therefore, after letting Vs denote the number of vertices of G that are singularities, we
see that

N ≥ 2(V − Vs) = 2V − 2Vs. (2)

In addition, observe that each face of G that is not a singularity contributes with 1
to N , while each face of G that is a singularity contributes with 3 to N . Thus, after
letting Fs denote the number of faces of G that are singularities, we obtain that

F + 2Fs = (F − Fs) + 3Fs = N ≥ 2V − 2Vs, (3)

where the last inequality is (2). Now we can use (1) in the inequality (3) to obtain
that 2(Vs + Fs) ≥ 2V − F = 4. Hence the number of singularities Vs + Fs of P is at
least 2, which concludes the proof. �


